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A comparison is made of solutions of the continuity equations for the motion of electrons 
and ions in a strong electric field using the methods of Euler, Runge-Kutta, Lax-Wendroff, 
characteristics and the flux-corrected transport (FCT) algorithm “Phoenical LPE Shasta” 
developed by Boris and Book (J. Comput. Phys. 20 (1976), 397), with their flux limiter and 
with the new flux limiting algorithms developed by Zalesak (J. Comput. Phys. 31 (1979), 
335). Results with and without ionization, and for uniform and non-uniform electric fields, are 
compared. Because ionization by electrons is strongly dependent on the electric field, 
considerable care needs to be taken to choose an optimum numerical scheme for non-uniform 
fields. For example, the calculation of the properties of corona discharges, or the cathode-fall 
of a glow discharge, requires fine spatial resolution. It is found that the Lax-Wendroff method 
and the method of characteristics give acceptable results; however, the Phoenical LPE Shasta 
algorithm with the flux limiting algorithm of Zalesak gives the best results, with the added 
advantage of suppressing spurious oscillations. 

1. INTR~D~JCTI~N 

Theoretical predictions of the properties of the corona discharge, the cathode fall of 
a glow discharge, the development of a spark, or the effects of space charge on 
plasma motion are difficult because of the strongly varying electric field as shown in 
the work of Davies et al. [l] and Morrow and Lowke [2]. In the present paper, we 
assume as a first approximation that electron drift velocities and ionization coef- 
ficients are those given by the equilibrium values for a uniform electric field, so that 
solutions can be obtained for the continuity equations. Even so, there are difficulties 
in obtaining time-dependent solutions, because of the fine spatial resolution that is 
required. Because of the additional requirement to integrate over long time intervals, 
it is essential to optimise the numerical integration scheme. 

The continuity equation for the drift of electrons in an electric field is 

(1) 

where t is the time variable; x is the space variable; N is the electron number density; 
W is the electron drift velocity, which is a function of the electric field; and S is the 
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source term, which may include the creation of electrons by ionization and the loss of 
electrons due to recombination and attachment. We wish to solve this equation for 
uniform and non-uniform electric fields. 

Initially, we obtain results by neglecting the source term S in Eq. (1). The simplest 
method is to use Euler integration in time, with upwind differencing for the space 
variable [3]. Unfortunately, this method has strong numerical diffusion, which is 
proportional to the mesh size [4,5]. However, Strang [6] has suggested that a fourth- 
order Runge-Kutta method in the time variable, and fourth-order central differences 
in the space variable, should be stable without diffusion. The practical use of high- 
order methods for hyperbolic systems has recently been advocated by Turkel [7]. 
This is attractive because of the high order of accuracy that is possible. Thus, a 
fourth-order Runge-Kutta method in time was coupled in turn with upwind 
differencing, simple central differencing, and fourth-order central differencing of the 
space variable. 

Another approach is to use the Lax-Wendroff method as applied to shock waves 
181. Both the one- and two-step methods were evaluated. 

The “leapfrog method” was also tested, but was found to be unstable, which was 
not unexpected [9]. 

The hybrid method of characteristics due to Hartree [lo] was also applied. This 
method has been applied previously to this problem [ 11; however, it is complex and 
cumbersome to code and is an iterative method which may not converge under some 
conditions. 

Finally the flux corrected transport algorithms (FCT) of Boris and Book were 
applied [ 11, 121. The particular transport algorithm eventually adopted was the 
“Phoenical LPE Shasta” algorithm, which is the most convenient algorithm for use 
with source terms and boundary conditions and is one of the most accurate methods 
[ 11, 12]. The original flux correction algorithm developed by Boris and Book was 
applied as well as the new flux correction algorithm proposed by Zalesak [ 131. 

For all the non-FCT approaches the basic Courant-Friedrichs-Lewy condition 
must be obeyed for stability 191; i.e., the time step At must be such that At <Ax/W, 
where Ax is the grid spacing ] 141. The Shasta algorithm is restricted to At < Ax/2 W 

2. METHODS OF SOLUTION 

2.1. The Source Term Neglected 

(a) The Euler method. With Euler integration it is necessary to use upwind 
differencing for stability. 

(b) The Runge-Kutta method. A standard fourth-order Runge-Kutta integration 
was used for the time variable [ 151. The space variable was treated in turn using 
upwind differences, simple central differences [ 1.51, and fourth-order central 
differences [ 161, as suggested by Strang (61. The equation used for fourth-order 
central differences is 
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(2) 

where U{ = N{ W!, where j refers to the time step and i to the grid position. 

(c) The Lax-Wendroff method. The standard two-step Lax-Wendroff method, 
[S-lo, 141, was applied. See Section 2.2. The original one-step Lax-Wendroff method 
was also applied; in this case, it has the form 

- (Wi + w;‘- ,)(U{ - u;- 1)] 
=N;+AN,,. (3) 

(d) The hybrid method of characteristics. The method used is the hybrid method 
due to Hartree [IO], Eq. (l), neglecting the source term S, being written 

or 
DN 
E=-N$ (4b) 

Equation (4) is then integrated along characteristic lines for only one time step to 
give a solution at regular grid points. The method, which is of second order, is 
outlined succinctly by Ames ] lo], and some useful details are given by,Davies and 
Evans [ 171. Briefly the method involves an iterative determination of the best position 
of the characteristic line which terminates on a grid point at time t + At. This 
involves interpolation of density values between grid points at time t. The method is 
quite complex particularly once positive and negative ions are included as each 
species has separate characteristic lines, yet all must be solved simultaneously if the 
equations are coupled. 

(e) Phoenical LPE Shasta. The method actually used in this case will be 
outlined in some detail, as Boris and Book give so many alternatives and there are 
some aspects which need to be defined in detail. The method takes the following steps 
[12]: 

1. Compute a transported and diffused solution, N{’ ‘, using an equation which 
in our notation is 

~~“=N~--[~i+l,*(Nj+, + N~)-ti-y2(N~+N~-l)] 

+ [vi+ v*(N+ 1 - N/) - Vi- I/z(N{ - N{- I)], (5) 
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where Ei+ ,,z = Wi+ ,I2 At/Ax and Wi+ vz is the flow velocity half way between grid 
points i and i + 1 calculated in this case by simple averaging. For the Phoenical LPE 
version of the Shasta algorithm, 

“i+ l/2 = ; + 3&f+ “2 * 

2. Compute the raw antidiffusive fluxes which in our case for the Phoenical 
version are 

where pi+ 1j2 = (1 - &f+ 1,2)/6- 
3. Compute corrected antidiffusive fluxes, f, using 

i i t l/2 = S . max{O, min[S . (13jfi - Nj’,‘:), Igi+1/21, S . (N!+ 

where (S] = 1 and S = sign@!:,! -I!+‘). 
4. Perform antidiffusion using 

- iv{-’ :)I ), (7) 

(8) 

Thus Njtl is the required solution at t + At. 
The new algorithm for flux limiting developed by Zalesak [ 131, which is outlined 

succinctly in Section IV of his paper, was also applied. The method of avoiding 
“clipping” by predicting maxima and minima between grid points for use in flux 
limiting, outlined in Section V of Zalesak’s paper, was also applied. In particular the 
flux constraint conditions described by Eq. (14) of Zalesak’s paper were found to be 
quite important rather than cosmetic as suggested by Zalesak. In our notation the 
extra flux constraint is 

Ti+1/*=O if #it,,(N{,‘: -$+‘) < 0 

and either di+,,,(flf,‘i - fl{,‘:) < 0 

or $i+v2(fli+1 --fl{?:) < 0. 
(9) 

2.2. The Source Term Included 
For the Euler and Runge-Kutta methods, the source term is simply added to the 

convective term, such that 

AN=At (10) 

We proceed similarly for the method of characteristics. 
For the Lax-Wendroff methods and the FCT method the source term must be 

introduced so that it is treated with second-order accuracy, as for the convective 
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term. For the one-step Lax-Wendroff method and the FCT method the increment in 
the electron density AN, due to the convective term was calculated for a full time 
step. Then an auxiliary step was introduced by calculating the complete AN, at half w 
the time step, using the equation 

ANTy2 = $ (Sj) + FAN,. (11) 

This allows auxiliry values for the source terms Si j+ y2 to be calculated. Then a full 
step was calculated, using the equation 

AN T = A@!+ ‘I2 , >+AN,. (12) 

Thus, the source term is effectively integrated using a second-order Runge-Kutta 
technique [ 15 1. 

The source term was introduced to the two-step Lax-Wendroff scheme in a slightly 
different way, as follows. 

Auxiliary step: 

(13) 

Main step: 

In this treatment, the source term is effectively evaluated by the second-order 
Runge-Kutta method, but with the difference that in the averaging process the source 
term is influenced by neighbouring grid points, whereas in the one-step case it is not. 
As a consequence, there are slight differences in the results for strong ionization in a 
non-uniform field. 

The form of the source term introduced in this case is 

S=NaIWI, (15) 

where a is the ionization coefftcient [ 11. However, in other cases, terms may be 
included to take account of the effects of attachment and recombination; this couples 
the equation to the equations for positive and negative ions. 
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3. INITIAL CONDITIONS 

All the methods are applied using the same basic conditions as those used by 
Davies et al. [ 11; these are outlined below. The electron densities are kept below the 
level where space charge effects need to be included. 

The electrons start near the cathode and move between two plane, parallel elec- 
trodes 3 cm apart. This space is represented by a grid of 101 points; hence 
Ax = 0.03 cm. The initial electron pulse is either triangular (Figs. 1 and 3) or square 
(Fig. 5). 

The uniform electric field was -5.58 kV/cm [ 11. The non-uniform electric field 
was taken, for convenience, to be linearly decreasing in amplitude, and for the square- 
wave calculation (Fig. 5) decreased from -11.16 to -0.11 kV/cm. With ionization 
(Figs. 6 and 7) the field amplitude had to be reduced to -6.7 kV/cm decreasing to 
-0.066 kV/cm. 

The electron velocity was given by 

/ WI = 2.9 x lo5 E/p cm . sect’ (16) 

and the ionization coefficient by 

a/p = 5.7 exp(-260p/E), (17) 

where p is pressure 111. The time step was At = 5 x lo-” sec. The Courant- 
Friedrichs-Lewy condition [9] requires that At < Ax/W, and this was maintained 
throughout the calculations for all the non-FCT methods. For the FCT methods the 
condition becomes At < Ax/2w [ 121. 

In all methods except the FCT methods the electron density N was maintained 
positive or zero, i.e., 

so that a calculated negative density was set equal to zero. 
The Phoenical LPE Shasta method maintains positivity when the flux correction 

algorithms of Boris and Book [ 121 are used and the above measure is not required. 
However, when the new flux correction algorithm of Zalesak is applied the calculated 
densities do dip slightly below zero, thus as a countermeasure, in the spirit of the 
FCT method, the transported and diffused solution was used when the density 
became negative, guaranteeing positivity. 

4. RESULTS AND DISCUSSION 

4.1. Solutions Neglecting the Source Term and with a Uniform Electric Field 

For the results of this section, the standard triangular electron pulse near the 
cathode was used. 
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(a) The Euler method with upwind difSerencing. As predicted, the results show 
strong numerical diffusion, as shown in Figs. la and 2, where the initial electron 
pulse is modified unacceptably. 

(b) The Runge-Kutta method. The introduction of Runge-Kutta integration in 
time with upwind differencing had no effect on the numerical diffusion, and the 
results were comparable with Fig. la. 

When fourth-order central differences were used for the space variable, the results 
shown in Fig. lb were obtained. These results show a small amount of dispersion, 
which removes the sharp corners, and very little dissipation. The position of the main 
peak coincides with the ideal position of the initial triangle displaced by a distance 
D = tW along the x axis, as shown in Fig. 2. This ideal behaviour is marred by the 
appearance of the spurious smaller peaks behind the main pulse, seen more clearly in 
Fig. 2. As outlined by Roache [8], the spurious peaks are probably due to lack of 
dissipation in the equations. These small peaks grow rapidly when ionization is 
included, leading to unacceptable results. 

With simple central differences, the results are stable and very similar to Fig. lb, 
with the appearance of spurious peaks. However, there is some dissipation, and the 
peak heights slowly decay, as shown for the Lax-Wendroff method (Fig. lc). 

0 
0 1 2 3 

D(m) 

0 0 
0 1 2 3 0 1 2 3 

Dkm) 0 km) 

FIG. 1. Results of integration of Eq. (I), neglecting the source term, for a uniform electric field using 
various non-FCT algorithms. Calculations, with a triangular wave input at t = 0, were for 200 steps 
(100 nsec) with curves drawn every 20 steps (10 nsec). (a) Euler method with upwind differencing. (b) 
Fourth-order Runge-Kutta method with fourth-order central differences. (c) One- and two-step Lax- 
Wendroff methods. (d) Hybrid method of characteristics. 
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Axml position lgnd pants) 

FIG. 2. Simultaneous comparison of results from Fig. 1 after 200 steps (100 nsec) with the initial 
triangular pulse of electrons displaced a distance D = IW along the x axis, where t = 100 nsec. (-) 
Initial pulse. (0) Euler method. (0) Runge-Kutta method. (0) Lax-Wendroff methods. (X) Hybrid 
method of characteristics. 

(c) The Lax- Wendrofl method. The one- and two-step Lax-Wendroff methods 
gave virtually indistinguishable results, as shown in Fig. lc. In this case, there is a 
certain amount of dispersion and some dissipation. As shown in Fig. 2, the dispersion 
is slightly asymmetric, distorting the pulse so that it leans slightly backwards with a 
longer leading edge; this delays the pulse slightly compared with the ideal position of 
the initial triangle shown in Fig. 2. 

(d) The hybrid method of characteristics. The results, shown in Fig. Id, are very 
similar to the Lax-Wendroff results, with slightly less dispersion and dissipation. As 
shown in Fig. 2, the dispersion is symmetrical and the peak position is accurate. 

(e) Phoenical LPE Shasta. Using the flux correction algorithm devised by Boris 
and Book, Eq. (7), the initial triangular wave is “clipped,” as expected, and 
broadened as shown in Fig. 3a. 

Using Zalesak’s flux correction algorithm with flux also limited by the predicted 
maxima and minima between grid points but neglecting the flux contraint defined by 
Eqs. (9), the peaks are not clipped but small spurious peaks follow the main wave, as 
shown in Fig. 3b. 

The result of using Zalesak’s flux correction algorithm, including the conditions of 
Eqs. (9) but neglecting the flux limited by predicted maxima and minima, is shown in 
Fig. 3c. The spurious peaks disappear and the pulse shape is better preserved than for 
Fig. 3a. 

Using Zalesak’s full flux correction algorithm, including flux limited by predicted 
maxima and minima between grid points and the flux constraint defined by Eqs. (9), 
the results shown in Fig. 3d are obtained. There are no spurious peaks; thus, the 
spurious peaks are associated with the neglect of the flux constraint of Eqs. (9). The 
peak is as well preserved as that shown in Fig. lb for the fourth-order Runge-Kutta 
with fourth-order central differences, without the associated spurious dispersive peaks. 
In fact when the curves of Fig. 3d are superimposed on those of Fig. lb they almost 
exactly overlap. 

In Fig. 4 the last curves, for t = 100 nsec, of Figs. 3a, c, and d are superimposed on 



HYPERBOLIC EQUATIONS FOR ELECTRON DRIFT 9 

1530 l500 

"; low 
Y 

;xm 

z z 

500 500 

0 0 
0 1 2 3 

0 km1 D km) 

1500 WI 

-&XI0 
u 

~,lUJO 
Y 

z L 

500 500 

0 0 
0 1 2 3 0 1 2 3 

II (cm) 0 km) 

FIG. 3. Result of using the FCT algorithm phoenical LPE Shasta to integrate Eq. (I), neglecting the 
source term, for a uniform field using various flux correction algorithms. Calculations with a triangular 
wave input were for 200 steps (1OOnsec) with curves drawn every 20 steps (10nsec). (a) Boris and 
Book’s flux correction algorithm (Eq. (7)). (b) Zalesak’s flux correction algorithm, including the use of 
predicted maxima and minima between grid points for flux correction but neglecting Eq. (9). (c) 
Zalesak’s flux correction algorithm including Eq. (9) but neglecting the use of predicted maxima and 
minima between grid points. (d) Zalesak’s flux correction algorithm including the use of predicted 
maxima and minima for flux correction and Eq. (9). 

65 70 75 so 
Arid position (grid pmts) 

FIG. 4. Simultaneous comparison of results from Fig. 3 after 200 steps (100 nsec) with the initial 
triangular pulse of electrons displaced a distance D = TV along the x axis, where t = 100 nsec. (-) 
Initial pulse. (0) Boris and Book’s flux corrector. (0) Zalesak’s full flux corrector less the peak 
preserver. (X) Zalesak’s full flux corrector with peak preserver. 
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the curve for the initial triangle displaced a distance D = tw along the x axis. The 
positions of all the peaks are very accurate, with the full Zalesak flux corrector giving 
the best results. 

4.2. Solutions Neglecting the Source Term and with a Non-Uniform Electric Field 

The use of an electric field of decreasing amplitude, as outlined in Section 3, 
resulted in all cases in the peak of the triangular wave increasing while the pulse 
width decreased. The same effect is illustrated more graphically using an initial 
square wave, as shown in Fig. 5 for various methods. 

The physical implications of the results shown in Fig. 5 are interesting, since they 
indicate that a pulse of electrons will concentrate as it moves out of a high field 
region, due to the trailing electrons overtaking the leading electrons. The opposite 
happens when electrons move into an increasing electric field. 

For the two step Lax-Wendroff method, Fig. Sa, dispersion causes a serious 
oscillation to develop on the leading edge; suppression of negative densities prevents 
similar oscillations from appearing on the trailing edge. The result of numerically 
integrating the electron density with respect to the space variable using the 
trapezoidal rule [ 151 for the initial and final distributions shows a net increase of 8% 
in the total electron density for Fig. 5a. 

0 
0 1 2 3 0 1 2 

0 km1 0 km) 

3000 3ow 

^ 2000 -7 2ooo 

5 5 
z z 

1000 1COl 

0 0 
0 1 2 3 0 1 2 

0 km1 0 km) 

FIG. 5. Results of the integration of Eq. (I), neglecting the source term, for a linearly decreasing 
electric field using various algorithms. Calculations, with a square wave input, were for 200 steps 
(100 nsec) with curves drawn every 20 steps (10 nsec). (a) Two step Lax-Wendroff. ((b) Method of 
characteristics. (c) Phoenical LPE Shasta using the full Zalesak flux corrector but neglecting Eqs. (9). 
(d) Phoenical LPE Shasta using the full Zalesak flux corrector, including Eqs. (9). 
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The method of characteristics gives better results with symmetrical distortion of the 
leading and trailing edges as shown in Fig. 5b. Suppression of negative densities 
prevents negative distortions. The net density increased by 5% for Fig. 5b. 

Figure 5c shows the results for the Phoenical LPE Shasta method using Zalesak’s 
flux correction algorithm, including the peak preserver but neglecting Eqs. (9). 
Spurious peaks again appear at the trailing edge and a spurious trough near the 
leading edge is clearly due to neglecting the conditions of Eqs. (9), which are quite 
important in this case, rather than cosmetic as Zalesak suggests [ 131. 

Including the extra flux conditions of Eqs. (9) removes these spurious peaks and 
troughs completely as shown in Fig. 5c, where the results are close to ideal. 
Integration of the electron density gives an increase of 1.4% in the first 30 nsec; then 
the integrated density does not change by more than 1 part in lo8 from 30 to 
100 nsec, a truly remarkable result since the distribution is transported and 
considerably modified from 30 to 100 nsec. 

4.3. Solutions Including the Source Term and a Uniform Electric Field 
The accuracy of the integration of the source term can be tested using a uniform 

electric field and a constant electron density throughout the space. The constant 
electron density constitutes a large square wave which moves along at velocity W 
while its top remains flat, so that cYNW/%X = 0, and the electron density on the 
plateau increases as 

N, = N, ew(at I WI), 

where t is the elapsed time. With an initial electron density of 1000 cm-3, the density 
calculated from Eq. (18) after 50 nsec was 1.055 X lo6 cmw3 while all methods gave 
n =: 1.049 x lo6 cmp3, a difference of only 0.5%, which is quite acceptable. 

4.4. Solutions Including the Source Term and a Non-uniform Electric Field 
The results of introducing the source term with a non-uniform electric field are 

summarised for the five non-FCT methods in Fig. 6, and for the FCT methods in 
Fig. 7; both show the position at 60 nsec after 120 steps of the calculation. The 
results may be summarised as follows: 

(a) The Euler method. Not only is there strong numerical diffusion, but with 
ionization in a non-uniform electric field this diffusion leads to more electrons being 
created upstream, thus inflating the trailing edge of the pulse and distorting it so that 
it is seriously delayed with respect to the other results, as shown in Fig. 6. 

(b) The Runge-Kutta method. The small anomalous peaks shown in Fig. 2 are 
amplified in Fig. 6 to large proportions in the high field region behind the main pulse. 
However, the leading part of the pulse agrees very well with the hybrid method of 
characteristics. 

cc) The Lax-Wendrof methods. The two Lax-Wendroff methods give results 
very close to those for the hybrid method of characteristics. The differences between 
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FIG. 6. Result of including an ionization source term in a non-uniform electric field for various non- 
FCT algorithms. Calculations were made with a triangular wave input and results are shown after 120 
steps (60 nsec). (0) Euler method. (0) Runge-Kutta method. (0) One-step Lax-Wendroff method. (m) 
Two-step Lax-Wendroff method. (x) Hybrid method of characteristics. 

the two Lax-Wendroff methods are due to the slight differences in the treatment of 
the source term, discussed earlier. The two-step Lax-Wendroff method is closest to 
the method of characteristics. Both methods show some slight delay due to the 
slightly different dispersion of the Lax-Wendroff method compared with the method 
of characteristics noted earlier; see Fig. 2. 

(d) The hybrid method of characteristics. The hybrid method of characteristics 
appears to be the most accurate non-FCT method. The results, relative to the other 
methods, shown in Fig. 6, are consistent with the results of Fig. 2. 

IO 

c: 

5 

5 
zF5 

0 
35 LO 

Axial position (grid points1 

FIG. 7. Results of including an ionizing source term in a non-uniform electric field using the FCT 
algorithm Phoenical LPE Shasta and various flux correction algorithms. The results for the method of 
characteristics are shown for comparison. Calculations were made with a triangular wave input and are 
shown after 120 steps (60nsec). (0) Boris and Book’s flux corrector. (0) Zalesak’s full flux corrector 
less peak preserver. (x) Zalesak’s full flux corrector including the peak preserver. (0) Method of charac- 
teristics. 
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(e) Phoenical LPE Shasta. The use of the flux correction algorithms of Boris 
and Book or Zalesak without the peak preserver gives very similar results with a flat 
top, as shown in Fig. 7. The use of Zalesak’s algorithm with the peak preserver gives 
a much better shaped pulse, with a slightly different position, and with an amplitude 
significantly larger than that for the method of characteristics, shown for comparison 
in Fig. 7. The differences between the two methods stem from the fact that the FCT 
method preserves the shape of the initial pulse more accurately and small differences 
in pulse shape lead to significant differences when a non-uniform electric field is 
applied together with a non-linear ionization coefficient, giving a non-linear source 
term. 

4.5. Computing Times 
In Table I a comparison is made of the central processor execution times for 

calculations using the different algorithms to obtain the results shown in Figs. 1 and 
3. The computer used was the CSIRO Cyber 76 in Canberra. Note that these times 
are only relative and do not refer to the simple application of the algorithm since the 
programs, in all cases, include positive and negative ion calculations as well as 
ionization, attachment, recombination, and space charge effects, which have all been 
removed by setting suitable coefficients to zero, but which still contribute to the 
central processor time. 

The Runge-Kutta method is the most complex method and therefore takes the 
longest time while the Euler method is the simplest and takes the shortest time. The 
method of characteristics takes the second longest time for the simple problem of 
Fig. 1; however, for the more complex problem of Fig. 6 more iterations are required 
and the time taken was 22 set, while the time remains the same for the other 
methods. 

The two Lax-Wendroff methods take similar times, while the Boris and Book 
algorithm, Phoenical LPE Shasta, takes only 10% more time, and the full Zalesak 
algorithms only 20% more time. 

TABLE I 

Comparison of Central Processor (CP) Execution Times 

Method 
CP time 

(set) 

Euler with upwind differencing 1.3 
Runge-Kutta 17.9 
Lax-Wendroff, one step 9.6 
Lax-Wendroff, two step 9.9 
Method of characteristics 14.2” 
Phoenical LPE Shasta (Boris and Book) 10.9 
Phoenical LPE Shasta (full Zalesak treatment) 12.3 

a Note that the method of characteristics is an iterative process and takes longer to converge for some 
problems, for example, with the ionization calculation of Fig. 6 the CP time was 22.0 sec. 
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5. CONCLUSIONS 

The Euler method with upwind differencing is unacceptable due to numerical 
diffusion and the fourth-order Runge-Kutta method with fourth-order central 
differences is unacceptable due to the appearance of spurious peaks. 

The two Lax-Wendroff methods and the method of characteristics all give 
satisfactory results in most cases, particularly for the difficult case of a non-uniform 
field with a finite source term. Both methods exhibit distortions when propagating 
sharp discontinuities such as a square wave. The method of characteristics is the 
most accurate non-FCT method tested. 

The FCT method “Phoenical LPE Shasta” using the full flux correction algorithm 
of Zalesak, including the peak preserving method, gave the best results, which in all 
cases used were close to ideal. In particular it is not clear from the literature how well 
the FCT method performs in non-uniform electric and velocity fields of interest for 
electric discharges. The performance of the FCT method in non-uniform electric 
fields with and without a finite source term was excellent, giving very good results 
compared with other quite different methods, which gives considerable confidence in 
the method, in this area where analytic checks are not available. The FCT method 
does not use significantly greater computer time than the Lax-Wendroff method and 
uses less time than its closest rival, the method of characteristics. 
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